Lithium-Boron (Li-B) Monolayers: First-Principles Cluster Expansion and Possible Two-Dimensional Superconductivity.

نویسندگان

  • Chao Wu
  • Hua Wang
  • Jiajia Zhang
  • Gaoyang Gou
  • Bicai Pan
  • Ju Li
چکیده

Recent works demonstrated that the superconductivity at two-dimensional (2-D) can be achieved in Li-decorated graphene (Nature Phys. 2012, 8, 131 and Proc. Natl. Acad. Sci. 2015, 112, 11795). Inspired by the progress made in graphene, we predict by using the first-principles calculations that Li-incorporated B monolayers (Li-B monolayers) can be alternative 2-D superconductors. First-principles cluster expansion approach was used to evaluate the structural diversity and energetic stability of the 2-D Li-B monolayers by treating them as ternary Lix⬡yB1-x-y pseudoalloys (⬡ refers to B hexagonal hole). After thoroughly exploring the Li-B configuration space, several well-ordered and stable Li-B monolayers were identified. Detailed analyses regarding the electronic structures and lattice dynamics properties of the predicted Li-B monolayers were performed. Compared with the non-superconducting pure B-sheet, some predicted Li-B monolayers can exhibit the phonon-mediated superconducting properties above the liquid helium temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel two-dimensional MgB6 crystal: metal-layer stabilized boron kagome lattice.

Based on first-principles calculations, we designed for the first time a boron-kagome-based two-dimensional MgB6 crystal, in which two boron kagome layers sandwich a triangular magnesium layer. The two-dimensional lattice is metallic with several bands across the Fermi level, and among them a Dirac point appears at the K point of the first Brillouin zone. This metal-stabilized boron kagome syst...

متن کامل

From Boron Cluster to Two-Dimensional Boron Sheet on Cu(111) Surface: Growth Mechanism and Hole Formation

As attractive analogue of graphene, boron monolayers have been theoretically predicted. However, due to electron deficiency of boron atom, synthesizing boron monolayer is very challenging in experiments. Using first-principles calculations, we explore stability and growth mechanism of various boron sheets on Cu(111) substrate. The monotonic decrease of formation energy of boron cluster B(N) wit...

متن کامل

A ug 2 00 5 Electronic structure , electron - phonon coupling and superconductivity of isotypic noncentrosymmetric crystals Li 2 Pd 3 B and Li 2 Pt 3

Electronic structure of recently discovered isotypic ternary borides Li2Pd3B and Li2Pt3B, with noncentrosymmetric crystal structures, is studied with a view to understanding their superconducting properties. Estimates of the Fermi-surface averaged electron-phonon matrix element and Hopfield parameter are obtained in the rigid ion approximation of Gaspari and Gyorffy [Phys. Rev. Lett. 28 (1972) ...

متن کامل

Boron-substituted graphyne as a versatile material with high storage capacities of Li and H2: a multiscale theoretical study.

Based on density functional theory (DFT), first-principles molecular dynamics (MD), and the grand canonical ensemble Monte Carlo (GCMC) method, we investigated the boron substitution in aromatic rings of graphyne in terms of geometric and electronic structures as well as its bifunctional application including Li and H2 storage. The calculated binding energies of B-doped graphyne (BG) are signif...

متن کامل

Piezoelectricity in two-dimensional group-III monochalcogenides

KEYWORDS piezoelectricity, two-dimensional (2D) material, monochalcogenide, density functional theory (DFT) calculation ABSTRACT It is found that several layer-phase group-III monochalcogenides, including GaS, GaSe, and InSe, are piezoelectric in their monolayer form. First-principles calculations reveal that the piezoelectric coefficients of monolayer GaS, GaSe, and InSe (2.06, 2.30, and 1.46 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 8 4  شماره 

صفحات  -

تاریخ انتشار 2016